
Opportunities for Parallelism
Dr. Michael K. Bane

HIGH END COMPUTE

Questions

1. What do you understand by "parallelism"

2. How/where is parallelism in computers?

Parallel / parallelism

• Concurrent / concurrency

• Many things ("tasks", "operations", "calculations",…) at once

• Run forever with fixed separate (parallel lines)

• Co-existing (parallel universe)

• Equivalent (the parallel circles of constant latitude)

• Electrical circuits

Parallel Programming

• Running one or more codes concurrently in order to

– reduce the time to solution (divide work by more cores)

– model harder cases (scale up problem with increasing core count))

– model larger domains (more memory)

– use models at higher resolutions (more memory)

– reduce the energy to solution

• For most of these we will need to

– divide the work between cores

– divide the data between cores

Approaches to parallelism

• Hardware
– Multiple-core processors – clusters – clusters of clusters

– Many core accelerators & co-processors

– Vectorisation & ILP (intra core)

• Software
– Use of libraries (eg MKL)

• Math Kernel Lib (Intel) is threaded ie parallel (see Exercise001)

– Compiler

– Programming Languages: C++, Java, Haskell, occam

– Extensions to languages

• Directives based: OpenMP, OpenACC

• Libraries based: MPI, OpenCL

Questions

1. Where do you see parallelism in the natural world?

2. What prevents us having parallel simulations of the

parallelism observed in the natural world?

Possible Solutions
1. Light Rays

– Stationary pumpkin: Rays are independent so can model each in parallel

– Moving pumpkin: image per position is independent, so can also parallelise over time

2. Paint by numbers

1. task parallelism (each doing one colour)

2. Limits & load imbalance depending on number of colours/pens/people and on number of areas to be coloured in

3. Jigsaw

1. Divide by type (eg sea/beach/dunes) -> task parallelism; could also do edges .v. internal (but load imbalance since former is

O(N) and latter is O(N^2)

2. Iterating over take a piece and try every place it fits -> monte carlo

3. More pieces -> more work (and more comms)

4. Coloured balls

1. Could scale but there may be overhead of working out who to get which colour

2. Alternative sorting: everybody sorts a local pile and then merge local piles to give global sort

5. Find next prime number

1. Checking primeness can be done in parallel; checking a region for a prime could be done in parallel

2. Given there are screen savers to find next prime, there must be reasonable parallelism

6. Fibonnaci

1. Ideally know the analytical solution -> many great advances in computational ability are due to ALGORITHMIC IMPROVEMENT

rather than faster/parallel computers

7. SETI@home, Folding@home

ARCHICTECTURE

What are the 2 main memory models?

• Recap: questions from SL2

• Diagram on whiteboard

SHARED MEMORY

• Memory on chip

– Faster access

– Limited to that memory

– … and to those nodes

• Programming typically OpenMP (or

another threaded model)

– Directives based

– Incremental changes

– Portable to single core / non-OpenMP

• Single code base ☺

DISTRIBUTED MEMORY

• Access memory of another node

– Latency & bandwidth issues

– IB .v. gigE

– Expandable (memory & nodes)

• Programming 99% always MPI

– Message Passing Interface

– Library calls

– More intrusive

– Different MPI libs / implementations

– Non-portable to non-MPI (without effort)

Examples for OpenMP
Typical Number of

cores addressing

Shared Memory

Shared Memory size

/GB

Typical Shared Mem

programming

paradigm

Directives supported

Desktop PC 2-4

(HT not good idea)

4-32 OpenMP

Workstation 8-32 32-128 OpenMP

Node of Archer 24 64 (some 128) OpenMP

Cavium 2x ThunderX 96 (2x 48c) OpenMP

Intel

Xeon Phi

60-64 cores

(HT works!)

OpenMP

NVIDIA

GP100 (5.3TF DP)

60 Streaming

Multiprocessors

(SMs) each of 64

"CUDA cores"

64 KB per SM CUDA OpenMP 4 or higher

OpenACC

AMD GPU OpenCL

SGI UV3000 4,096 threads

on 256 sockets

64 TB (yes TB!) OpenMP

http://archer.ac.uk/about-archer/gallery/xe6-xc30-overview.pdf

• Programming usually a mix of
MPI between nodes (or NUMA regions)

OpenMP on a node (or for given NUMA region)

• Ability to use directives (OpenMP) programming to "offload"

to GPUs and Xeon Phi

• Exciting times

– New memory tech (MCDRAM/XPhi, stacked memory/GP100)

– Mixing accelerators/GPUs and CPUs

• and FPGAs

Next…

• Focus on the OpenMP programming

• Can summarise very succinctly

• But first, any FORTRAN codes to get on to Archer?

Next…

• Focus on the OpenMP programming

• Can summarise very succinctly

• But first, any FORTRAN codes to get on to Archer?

!$ OMP directive

TODAY'S HARDWARE

26

Cost Memory Energy Requirements FLOPS per second

1948 “Baby” computer, Manchester 1.1 K

1985 Cray 2 $16M 2 G

2013 ARCHER (Cray XC30). 118K

cores (#41 in Top500)

£43M 64 GB/node ~2 MW

641 MFLOPS/W

1.6 P

2015 iPhone 6S. ARM / Apple A9. 2

cores

£500 2 GB 4.9 G

2015 Raspberry Pi 2B. ARMv7. 4

cores

£30 1 GB 50 M per core

200 M per RPi

2013-2015 Tianhe-2 (#1 of

Top500). 3.1M cores

1 PB 17.8 MW 33.86 P

2015 Shoubu, RIKEN (#1 of

Gren500). 1.2M cores

82 TB 50.32 KW

7 GFLOPs/Watt

606 T

2016 Sunway Tiahu. 10.6 M cores

(new Chinese

chip/interconnect etc)

$270M (inc R&D

to design chips

etc)

1.3 PB 15.4 MW

6 GLOPS/Watt

125 P

Images: cs.man.ac.uk, CW, appleapple.top, top500/JD, RIKEN

CPU Intel, AMD,

ARM (as IP)

1 to maybe 64 cores,

running at 2 to 3 GHz

Powerful cores, out of

order, look ahead. Good

for general purpose and

generally good

1-2 sockets direct on the

motherboard

GPU NVIDIA, AMD 15 to 56 "streaming

multiprocessors" (SMs),

each with 64-128

"CUDA Cores". Base

freq about 1 GHz

SMs are good for high

throughput of vector

arithmetic

AMD produced "fused" CPU &

GPU. Until 2016, NV cards

situated at far end of PCI-e

bus. In 2016, NV working with

IBM for on-board solution

using "NVlink"

Xeon Phi Intel 60-70 cores Low grunt but general

purpose cores

KNC was PCI-e but KNL (2016)

is standalone

FPGA Altera (Intel),

Xilinix

Fabric to design own

layout – and

reconfigurable

Can use Verilog or VHDL

to map. MATLAB can also

be used. Maxeler uses

Java

Focus needs to be on the data

flow

ASIC Anton-2 uses custom

ASIC for MD calcs. Very

fast but not necessarily

low power

If you're designing ASIC you

needn't be on this course!

HIGH THROUGHPUT COMPUTING

Many ways to get a job done fast

• So far

– Taking one code, using parallelism to get that simulation done

quicker

• But what about likes of Monte Carlo, parameter sweeps etc

– Run one "standalone" task, a huge number of times

– ie lots of parallelism!

• Could program as one code or look at how to run many copies

Options

• Run as one code

– Pro: all in one place, easier for post analysis

– Con: will be seen as one big job by scheduler

• Submit many jobs to the batch system

– Pro: scheduler can use "back fill" to get small(er) jobs through quicker

(including likes of Condor)

– Pro: can run 50K tasks (say) without needing 50K cores

– Pro: load imbalance irrelevant (scheduler considers others' jobs)

– Con: need to put controlling logic at the scheduler level

How to do HTC

• Use "job arrays"

eg on Archer, additional PBS flag -J 0-999

Launches 1000 tasks, each with a $PBS_ARRAY_INDEX

Use this env var to set up parameters eg
N=(1,2,3,4,6,8,9,10,12,14,15,16,18,20,21,22,24)

let elem=${PBS_ARRAY_INDEX}

./a.out ${N[$elem]}

• Condor – use of "spare" cycles eg on PCs

Condor/DAGMAN: variables to control tasks and similar use of

arrays and indices to select local task idents from global set

PARALLELISM IN OTHER LANGUAGES ETC

OpenMP

• Extension for FORTRAN, C, C++

• Bindings for

– Java (or just use Java threads!)

– Python eg Cython

– (and many more)

Parallel Programming Languages

• UPC, CHAPEL

• Hadoop, Spark

• Julia

• CUDA, OpenCL

• Co-Array FORTRAN, Java

• Haskell – functional programming, native support for

parallelism (and concurrency)

• Erlang,

• VHDL, Verilog

Parallel Programming Languages

• UPC

• CHAPEL

• Co-Array FORTRAN

• Haskell – functional programming, native support for

parallelism (and concurrency)

– Parallelism: "speeding up a pure computation (by) using multiple

processors"

– Concurrency: "multiple threads of control that execute 'at the same

time'"

MATLAB

• Use of PCT

– to parallel for loops: parfor (beware granularity)

– To push to GPUs: GPUArray

– Clusters: Distributed Computing

Server (infra)

• OPTIMISATIONS
• Compile it (mcc) and run the

compiled exec in a job array (etc)

• Start using C

• Compile down to VHDL for FPGA

